## **Objectives**

- List and describe four types of efforts to save individual species.
- Explain the advantages of protecting entire ecosystems rather than individual species.
- Describe the main provisions of the Endangered Species Act.
- Discuss ways in which efforts to protect endangered species can lead to controversy.
- Describe three examples of worldwide cooperative efforts to prevent extinctions.

#### **Key Terms**

germ plasm Endangered Species Act habitat conservation plan Biodiversity Treaty

Figure 11 ► The California condor (above) nearly became extinct in the 1980s. A captivebreeding program (right) is returning some condors to the wild. Slowing the loss of species is possible, but to do so we must develop new approaches to conservation and sensitivity to human needs around the globe. In this section, you will read about efforts to save individual species and to protect entire ecosystems.

# Saving Species One at a Time

When a species is clearly on the verge of extinction, concerned people sometimes make extraordinary efforts to save the last few individuals. These people hope that a stable population may be restored someday. Methods to preserve individual species often involve keeping and breeding the species in captivity.

**Captive-Breeding Programs** Sometimes, wildlife experts may attempt to restore the population of a species through *captive-breeding* programs. These programs involve breeding species in captivity, with the hope of reintroducing populations to their natural habitats. One example of a captive-breeding program involves the California condor, shown in **Figure 11**.

Condors are scavengers. They typically soar over vast areas in search of dead animals to eat. Habitat loss, poaching, and lead poisoning brought the species near extinction. In 1986, the nine remaining wild California condors were captured by wildlife experts to protect the birds and to begin a breeding program. As of 2002, 58 condors had been returned to the wild and 102 were living in captivity. The question remains whether the restored populations will ever reproduce in the wild.

Preserving Genetic Material One way to save the essence of a species is by preserving its genetic material.Germ plasm is any form of genetic material, such as that contained within the reproductive, or germ, cells



of plants and animals. Germ-plasm banks store germ plasm for future use in research or species-recovery efforts. Material may be stored as seeds, sperm, eggs, or pure DNA. Germ plasm is usually stored in special controlled environments, such as that shown in **Figure 12**, to keep the genetic material intact for many years. Farmers and gardeners also preserve germ plasm when they save and share seeds.

**Zoos, Aquariums, Parks, and Gardens** The original idea of zoos was to put exotic animals on display. However, in some cases, zoos now house the few remaining members of a species and are perhaps the species' last hope for survival. Zoos, wildlife parks, aquariums, and botanical gardens are living museums of the world's biodiversity. Botanical gardens, such as the one shown in Figure 13, house about 90,000 species of plants worldwide. Even so, these kinds of facilities rarely have enough resources or knowledge to preserve more than a fraction of the world's rare and threatened species.

**More Study Needed** Ultimately, saving a few individuals does little to preserve a species. Captive species may not reproduce or survive again in the wild. Also, small populations are vulnerable to infectious diseases and genetic disorders caused by inbreeding. Conservationists hope that these strategies are a last resort to save species.





Figure 12 ► This scientist is handling samples of genetic material that are preserved in controlled conditions. The samples may be able to reproduce organisms many years from now.

Figure 13 ► This botanical garden is contained within a clear dome in Queen Elizabeth Park in Vancouver, Canada. The dome houses over 500 species of plants from all over the world as well as over 100 species of tropical birds. Figure 14 ► Another conservation strategy is to promote more creative and sustainable land uses. This coffee crop is grown in the shade of native tropical trees instead of on cleared land. This practice is restoring habitat for many migrating songbirds.



# QuickLAB

#### Design a Wildlife Preserve

#### Procedure

- Imagine you have enough money and political support to set aside some land in your community to be habitat for local wildlife. Your goal is to decide which areas to preserve.
- 2. Find out which species in your area would need this protection the most, where they currently exist, and what their habitat needs are.
- 3. Use a **colored pencil** to draw some proposed preserve areas on a copy of a **local map.**

#### Analysis

 Explain why you chose the areas you did. Can you connect or improve any existing areas of habitat? How could you reduce various threats to the species?



# **Preserving Habitats and Ecosystems**

The most effective way to save species is to protect their habitats. But setting aside small plots of land for a single population is usually not enough. A species confined to a small area could be wiped out by a single natural disaster. Some species require a large range to find adequate food, find a suitable mate, and rear their young. Therefore, protecting the habitats of endangered and threatened species often means preserving or managing large areas.

**Conservation Strategies** Most conservationists now give priority to protecting entire ecosystems rather than individual species. By protecting entire ecosystems, we may be able to save most of the species in an ecosystem instead of only the ones that have been identified as endangered. The general public has begun to understand that Earth's biosphere depends on all its connected ecosystems in ways we may not yet fully realize or be able to replace.

To protect biodiversity worldwide, conservationists focus on the hotspots described in the previous section. However, they also support additional strategies. One strategy is to identify areas of native habitat that can be preserved, restored, and linked into large networks. Another promising strategy is to promote products that have been harvested with sustainable practices, such as the shade-grown coffee shown in **Figure 14**.

**More Study Needed** Conservationists emphasize the urgent need for more serious study of the workings of species and ecosystems. Only in recent decades has there been research into such basic questions as, How large does a protected preserve have to be to maintain a certain number of species? How much fragmentation can a particular ecosystem tolerate? The answers may be years or decades away, but decisions affecting biodiversity continue to be made based on available information.

# **Legal Protections for Species**

Many nations have laws and regulations designed to prevent the extinction of species, and those in the United States are among the strongest. Even so, there is controversy about how to enforce such laws and about how effective they are.

**U.S. Laws** In 1973, the U.S. Congress passed the **Endangered Species Act** and has amended it several times since. This law, summarized in **Table 4**, is designed to protect plant and animal species in danger of extinction. Under the first provision, the U.S. Fish and Wildlife Service (USFWS) must compile a list of all endangered and threatened species in the United States. As of 2002, 983 species of plants and animals were listed as endangered or threatened. Dozens more are considered for the list each year. The second main provision of the act protects listed species from human harm. Anyone who harms, buys, or sells any part of these species is subject to a fine. The third provision prevents the federal government from carrying out any project that jeopardizes a listed species.

**Recovery and Habitat Conservation Plans** Under the fourth main provision of the Endangered Species Act, the USFWS must prepare a *species recovery plan* for each listed species. These plans often propose to protect or restore habitat for each species. However, attempts to restrict human uses of land can be controversial. Real-estate developers may be prohibited from building on their own land because it contains critical habitat for a species. People may lose income when land uses are restricted and may object when their interests are placed below those of another species.

Although battles between developers and environmentalists are widely publicized, in most cases compromises are eventually worked out. One form of compromise is a **habitat conservation plan**—a plan that attempts to protect one or more species across large areas of land through trade-offs or cooperative agreements. The region of California shown in Figure 15 is part of a habitat conservation plan.



#### Table 4 🔻

# Major Provisions of the Endangered Species Act

- The U.S. Fish and Wildlife Service (USFWS) must compile a list of all endangered and threatened species.
- Endangered and threatened animal species may not be caught or killed. Endangered and threatened plants on federal land may not be uprooted. No part of an endangered and threatened species may be sold or traded.
- The federal government may not carry out any project that jeopardizes endangered species.
- The U.S. Fish and Wildlife Service must prepare a species recovery plan for each endangered and threatened species.

Figure 15 ► This region of San Diego, California, is home to several endangered species. A habitat conservation plan attempts to protect these species by managing a large group of lands in the area.



Figure 16 ► Scenes like this one of elephant tusk poaching were common before the worldwide ban on the sale of ivory as part of CITES.



**Measuring Risk** There are many ways to categorize a species' degree of risk of extinction. The IUCN and the Nature Conservancy have multiple ranks for species of concern, ranging from "presumed extinct" to "secure." According to one study of 20,500 species in the United States, 1,400 of those species were at some risk. Calculate this number of species at risk as a percentage. Use this percentage to estimate how many species may be at risk around the world.



## **International Cooperation**

At the global level, the International Union for the Conservation of Nature and Natural Resources (IUCN) facilitates efforts to protect species and habitats. This organization is a collaboration of almost 200 government agencies and over 700 private conservation organizations. The IUCN publishes *Red Lists* of species in danger of extinction around the world. The IUCN also advises governments on ways to manage their natural resources, and works with groups like the World Wildlife Fund to sponsor conservation projects. The projects range from attempting to stop poaching in Uganda to preserving the habitat of sea turtles on South American beaches.

**International Trade and Poaching** One product of the IUCN has been an international treaty called *CITES* (the Convention on International Trade in Endangered Species). The CITES treaty was the first effective effort to stop the slaughter of African elephants. Elephants were being killed by poachers who would sell the ivory tusks. Efforts during the 1970s and 1980s to limit the sale of ivory did little to stop the poaching. Then in 1989, the members of CITES proposed a total worldwide ban on all sales, imports, and exports of ivory, hoping to put a stop to scenes like those in **Figure 16**.

Some people worried that making ivory illegal might increase the rate of poaching instead of decrease it. They argued that illegal ivory, like illegal drugs, might sell for a higher price. But after the ban was enacted, the price of ivory dropped, and elephant poaching declined dramatically.

**The Biodiversity Treaty** One of the most ambitious efforts to tackle environmental issues on a worldwide scale was the United Nations Conference on Environment and Development, also known as the first *Earth Summit*. More than 100 world leaders and 30,000 other participants met in 1992 in Rio de Janeiro, Brazil.

An important result of the Earth Summit was an international agreement called the **Biodiversity Treaty.** The treaty's goal is to preserve biodiversity and ensure the sustainable and fair use of genetic resources in all countries. However, the treaty took many years to be adopted into law by the U.S. government. Some political groups objected to the Treaty, especially to the suggestion that economic and trade agreements should take into account any impacts on biodiversity that might result from the agreements. The international community will thus continue to have debates like those that have surrounded the Endangered Species Act in the United States.



**Private Conservation Efforts** Many private organizations work to protect species worldwide, often more effectively than government agencies. The World Wildlife Fund encourages the sustainable use of resources and supports wildlife protection. The Nature Conservancy has helped purchase millions of hectares of habitat preserves in 29 countries. Conservation International helps identify biodiversity hotspots and develop ecosystem conservation projects in partnership with other organizations and local people. Greenpeace International organizes direct and sometimes confrontational actions, such as the one shown in Figure 17, to counter environmental threats.

# **Balancing Human Needs**

Attempts to protect species often come into conflict with the interests of the world's human inhabitants. Sometimes, an endangered species represents a source of food or income. In other cases, a given species may not seem valuable to those who do not understand the species' role in an ecosystem. Many conservationists feel that an important part of protecting species is making the value of biodiversity understood by more people. Figure 17 ► These Greenpeace activists are blocking the path of a Japanese whaling ship. Do you think this is an effective way to protect species?



# **Simple Biodiversity Assessment** Discover the diversity of weeds and other plants in a small area. Yards, gardens, and vacant lots are good places to

vacant lots are good places to conduct such a study. Mark off a 0.5 m<sup>2</sup> section. Use a field guide to identify every plant species that you can. At least identify how many different kinds of plants there are. You may want to sketch or photograph some of the plants. Then count the number of each kind of plant you identified. Record your results in your **Ecolog**.

# SECTION 3 Review

- **1. Describe** four types of efforts to save individual species.
- **2. Explain** the advantages of protecting entire ecosystems rather than individual species.
- **3. Describe** the main provisions of the Endangered Species Act.
- 4. **Give** examples of worldwide cooperative efforts to prevent extinctions.

#### **CRITICAL THINKING**

- 5. Analyzing Methods Read the headings in this section. Which type of effort to preserve species do you think is most worthwhile? **READING SKILLS**
- 6. **Comparing Viewpoints** Discuss ways in which efforts to protect species can lead to controversy.
- 7. **Inferring Relationships** Why was a complete ban of ivory sales more effective than a limited ban?

# CHAPTER

**1** What Is Biodiversity?



# Highlights

# Key Terms

biodiversity, 241 gene, 242 keystone species, 242 ecotourism, 244

#### **Main Ideas**

▶ Biodiversity usually refers to the number and variety of different species in a given area, but it can also describe genetic variation within populations or variation across ecosystems.

► The study of biodiversity starts with the unfinished task of identifying and cataloging all species on Earth. Although scientists disagree about the probable number of species on Earth, they do agree that we need to study biodiversity more thoroughly.

► Humanity benefits from biodiversity in several ways and perhaps in some unknown ways.

2 Biodiversity at Risk



endangered species, 245 threatened species, 245 exotic species, 247 poaching, 247 endemic species, 248 • Many scientists are now concerned that loss of biodiversity is the most challenging environmental issue we face.

► The most common cause of extinction today is the destruction of habitats by humans. Unregulated hunting and the introduction of nonnative species also contribute to extinctions.

► Certain areas of the world contain a greater diversity of species than other areas. An important feature of such areas is that they have a large portion of endemic species.

► The United States has a very important role in preserving biodiversity.

**3** The Future of Biodiversity



germ plasm, 252 Endangered Species Act, 255 habitat conservation plan, 255 Biodiversity Treaty, 257 • Most major conservation efforts now concentrate on protecting entire ecosystems rather than individual species.

► The Endangered Species Act establishes protections for endangered and threatened species in the United States. The act has generated some controversy and has been amended several times.

► International cooperation has led to increased recognition and protection of biodiversity worldwide.

► The desire to protect biodiversity often conflicts with other human interests.

Copyright© by Holt, Rinehart and Winston. All rights reserved.

# CHAPTER **1 Review**

#### **Using Key Terms**

Use each of the following terms in a separate sentence.

- **1.** keystone species
- 2. ecotourism

For each pair of terms, explain how the meanings of the terms differ.

- **3.** *hunting* and *poaching*
- 4. endemic species and exotic species
- **5.** endangered species and threatened species
- **6.** gene and germ plasm
- **7.** CITES and Biodiversity Treaty

# **STUDY TIP**

Use a Map As you review the chapter, refer to an atlas, to the maps in the Appendix, or to previous chapters about biomes to compare information. Draw your own map or make a list of the locations of some of the interesting species and ecosystems that you learn about.

#### Understanding Key Ideas

- **8.** The term *biodiversity* refers to
  - **a.** the variety of species on Earth.
  - **b.** the extinction of the dinosaurs.
  - **c.** habitat destruction, invasive exotic species, and poaching.
  - d. the fact that 40 percent of prescription drugs come from living things.
- **9.** Most of the living species known to science
  - **a.** are large mammals.
  - **b.** live in deserts.
  - **c.** live in the richer countries of the world.
  - **d.** are insects.
- **10.** Some species are so important to the functioning of an ecosystem that they are called
  - **a.** threatened species.
  - **b.** keystone species.
  - **c.** endangered species.
  - **d.** extinct species.

- **11.** A mass extinction is
  - **a.** a rapid increase in biodiversity.
  - **b.** the introduction of exotic species.
  - **c.** the extinction of many species in a short period of time.
  - **d.** a benefit to the environment.
- **12.** When sea otters disappeared from the Pacific coast of North America,
  - **a.** the area became overrun with kelp.
  - **b.** the number of fish in the kelp beds increased.
  - **c.** the number of sea urchins in the kelp beds increased.
  - **d.** the area became overrun with brown seaweed.
- **13.** Which of the following statements about the Endangered Species Act is not true?
  - **a.** Parts of an endangered animal, such as feathers or fur, may be traded or sold but only if the animal is not killed.
  - **b.** A species is considered endangered if it is expected to become extinct in the near future.
  - **c.** The federal government cannot carry out a project that may jeopardize an endangered plant.
  - **d.** A recovery plan is prepared for all animals that are listed as endangered.
- **14.** Because of efforts by the Convention on International Trade in Endangered Species (CITES),
  - **a.** the poaching of elephants increased.
  - **b.** the cost of ivory worldwide increased.
  - **c.** the international trade of ivory was banned worldwide.
  - **d.** a captive-breeding program for elephants was established.
- **15.** Emphasizing the preservation of entire ecosystems will
  - **a.** cause the economic needs of farmers to suffer in order to save a single species.
  - **b.** decrease biodiversity, especially in tropical rain forests, coral reefs, and islands.
  - **c.** throw the food webs of many ecosystems out of balance.
  - d. save many unknown species from extinction.

# CHAPTER



#### **Short Answer**

- **16.** When was hunting a major cause of extinctions in the United States?
- **17.** What are exotic species, and how do they endanger other species?
- **18.** Why do biologists favor using an ecosystem approach to preserve biodiversity?
- **19.** Describe three ways that preserving biodiversity can come into conflict with human interests.

## **Interpreting Graphics**

The graph below shows the numbers of various types of species that are officially listed as endangered or threatened in the United States and internationally. Use the graph to answer questions 20–23.

- **20.** Do these numbers necessarily reflect *all* species that may be in danger? Explain your answer.
- **21.** Which types of species might be underrepresented here?
- **22.** Compare the United States and world listings. What trends do you see in the types of species listed?
- **23.** Given this information, which types of species might need further research worldwide?



# Concept Mapping

24. Use the following terms to create a concept map: *biodiversity, species, gene, ecosystem, habitat loss, poaching, exotic species, germ plasm, captive breeding programs, and habitat preservation.* 

#### **Critical Thinking**

- **25. Comparing Processes** Read the passage in this chapter that describes current extinctions. How are the extinctions that are occurring currently different from most extinctions in the past? **READING SKILLS**
- **26. Analyzing Methods** With unlimited funding, could zoos and captive-breeding programs restore most endangered animal populations? Explain your answers.
- **27. Determining Cause and Effect** How might the loss of huge tracts of tropical rain forests have an effect on other parts of the world?

#### **Cross-Disciplinary Connection**

- **28. Literature** Try to remember or find some children's stories that include wild animals that are currently endangered, threatened, or extinct. Write a description of how these animals are portrayed in the stories. Also compare the animals in the stories to what you know about the real animals.
- **29. Geography** Obtain a list of the plants and animals that are endangered in your state. Find out where these species live, and mark the locations on a map of your state. Research the effects of habitat loss on species in your county or in surrounding areas.

#### **Portfolio Project**

**30. Endangered Species Outreach** Create a special project about one endangered species of your choice. Consider using a poster, an oral presentation, or a video to inform your classmates about your chosen species or to persuade them of the importance of saving the species.



Use the table below to answer questions 31–32.

- **31. Analyzing Data** Which of the types of species in the table below are most accurately described? What do the numbers indicate about how well various species are studied?
- **32. Applying Quantities** Which of the types of species may represent the greatest unknown loss of biodiversity? Which type of species is probably least important for further research into biodiversity?

| Estimates of Knowledge of Earth's Species |                                   |                                          |                                    |                             |  |
|-------------------------------------------|-----------------------------------|------------------------------------------|------------------------------------|-----------------------------|--|
| Type of species                           | Number<br>of species<br>described | Described<br>species<br>as % of<br>total | Number<br>threatened<br>or extinct | Accuracy<br>of<br>estimates |  |
| Bacteria                                  | 4,000                             | 0.40                                     | (unknown)                          | very poor                   |  |
| Vertebrates                               | 52,000                            | 94.55                                    | 3,843                              | good                        |  |
| Crustaceans                               | 40,000                            | 26.67                                    | 628                                | moderate                    |  |
| Plants                                    | 270,000                           | 84.38                                    | 31,277                             | good                        |  |

# WRITING SKILLS

- **33. Writing Persuasively** Write a letter to the editor of a publication or to an elected representative in which you express your opinion regarding protections of endangered species that might affect your local area.
- **34. Outlining Topics** Outline the major strategies for protecting biodiversity that have been described in this chapter. List pros and cons of each strategy.

# READING FOLLOW-UP

Now that you have read the chapter, take a moment to review your answers to the **Reading Warm-Up** questions in your **Ecolog.** If necessary, revise your answers.

#### STANDARDIZED TEST PREP

# Read the passage below, and then answer the questions that follow.

# *Excerpt from M. Reaka-Kudla, D. Wilson, and E. Wilson, eds., Biodiversity II, 1996.*

Aside from the academic tradition of biodiversity, another powerful influence, related to biodiversity, brought our culture to its current level of technological development: the exploration of the New World. From the thirteenth to the nineteenth centuries, technological developments in navigation allowed European voyagers to embark on an unprecedented exploration of the globe. These expeditions revolutionized knowledge of the geography, human culture, and biology of the world at the time. This ultimately led to a reevaluation of human society's place in the world and an understanding of the evolution of all living things. But the exploration also allowed the acquisition of untold wealth in living and nonliving natural resources, which was brought back from the New World and invested in the culture of western Europe.

- What do the authors probably mean by the term *influence*?
  a. a force of cultural change
  - **b.** a new type of scientific discovery
  - **c.** a source of geographic information
  - **d.** a form of navigation
- 2. Which of the following are not mentioned by the authors as factors in our current level of technological development?
  - a. geographical information
  - **b.** knowledge of a variety of species
  - **c.** new forms of government
  - **d.** evolutionary theory
- **3.** Which of the following did the authors most likely discuss in the paragraph just *before* this passage?
  - a. natural resources of the New World
  - **b.** religious beliefs of native peoples
  - c. academic tradition of European biology
  - **d.** history of European expeditions

# CHAPTER

# **Exploration Lab:** FIELD ACTIVITY

#### **Objectives**

- USING SCIENTIFIC METHODS Observe and measure differences in species diversity between two locations.
- USING SCIENTIFIC METHODS Graph and analyze data collected to reflect differences in species diversity.
- Evaluate the possible reasons for observed differences in biodiversity.
- USING SCIENTIFIC METHODS Infer other human activities that may influence local biodiversity.

#### Materials

graph paper hand lens meterstick or tape measure pen or pencil string or chalk line

optional materials: local-area field guides for plants, animals, and soil organisms; shovel or trowel





► **Step 2** Measure and mark off sample areas for your observation and counts of species diversity.

Biodiversity is most obvious and dramatic in tropical rain forests and coral reefs, but you do not have to travel that far to observe differences in species diversity or to see the effects that humans can have on biodiversity.

Recall that biodiversity is most often defined as the number of different species that are present in a given area. This measure can be estimated by making a sample count of species within a representative area. It is often easiest and most effective to collect or observe small organisms, such as insects and soil dwellers, or stationary organisms, such as plants and trees. In this activity, you will investigate the differences in species diversity in two areas that are close to each other, but that are affected differently by humans. You may work in teams or groups.

#### Procedure

- 1. Choose two sites for your analysis. Site 1 should be an area that has been greatly affected by humans, such as your school building and the surrounding sidewalks, parking area, or groomed lawns. Site 2 should be an area within view of site 1 but that is less affected by humans, such as a wooded area or a vacant lot overgrown with weeds. If directed by your teacher, you may choose more than two sites. Also ask your teacher about your sample square size.
- 2. At each site, measure a  $5 \text{ m} \times 5 \text{ m}$  square area using the meterstick or tape measure. You might use the edge of a building as a side of your square, or you might use trees as the corners. Mark the measurement of the area with string or a chalk line, as shown in the photograph.
- **3.** Observe each site carefully, and record a detailed description of each site. Include as many features as possible, such as location, soil condition, ways the area is used, amount of sun or rain exposure, and other factors that might affect the organisms that exist there.
- 4. For each site, create a table like the table below.

| Species Counts Per Site        |             |             |  |  |  |
|--------------------------------|-------------|-------------|--|--|--|
| Species type                   | Site number | Site number |  |  |  |
| Animals                        |             | NANDENTE    |  |  |  |
| Plants                         | DA KAI      |             |  |  |  |
| Fungi and other soil organisms | IN THIS     | BOOK        |  |  |  |

- **5.** Using your hand lens, find as many different species as possible within the site. Record each new species by placing a slash or tick mark in the column for each different species identified in each general category. You do not need to identify every organism by scientific name, but using field guides may help you have an idea of what you are finding. You may also make more specific categories (such as birds, insects, grasses, and trees) if you are able. Be careful not to disturb the area unnecessarily.
- **6.** Repeat steps 2–5 for each site. If directed by your teacher, compare your data with those of other groups.
- **7.** After you have made and recorded all of your observations, put away your materials and restore anything you disturbed at the sites.

#### Analysis

- **1. Constructing Graphs** Create a bar graph of the number of species counted at each site. As directed by your teacher, you may combine all species counts into one total per site or graph each category of organisms separately.
- **2. Analyzing Results** Based on your observations of the organisms found at the sites, which area reflected a higher level of biodiversity?
- **3. Interpreting Results** What factors may have contributed to the differences in biodiversity at the sites?

#### Conclusions

- **4. Drawing Conclusions** What can you conclude about the effect of human activities on biodiversity?
- **5. Applying Conclusions** What other human activities, besides those you observed directly, could have affected the biodiversity present at your sites?
- **6. Evaluating Methods** Do you feel that the method used in this lab was an effective way to identify biodiversity in an area? Why or why not? How could it have been improved?

#### Extension

**1. Research and Communications** If you were able to use local field guides, what can you generalize about the organisms that you were able to identify? Pay attention to aspects such as how easily recognized each organism is, how common it is in your local area, where it is found outside of your area, or what other unique facts are known about the biology or habitat needs of the organism.



► **Step 5** Observe and record how many different types of organisms you find within each sample area.



# **DR. E. O. WILSON: CHAMPION OF BIODIVERSITY**

Dr. Edward Osborne Wilson deserves some of the credit for the fact that this book includes a chapter called "Biodiversity." A few decades ago, the word *biodiversity* was used by few scientists and was found in few dictionaries. Dr. Wilson has helped make the concept and value of biodiversity widely recognized, through his extensive research, publishing, organizing, and social advocacy.

Since his early career as a pioneer in the fields of entomology and sociobiology, Dr. Wilson has gained recognition for many additional accomplishments. He has written two Pulitzer Prize-winning nonfiction books, and has received the National Medal of Science and dozens of other scientific awards and honors. Wilson is widely recognized as one of the most influential scientists and citizens of our time.

#### It All Started with Bugs

Even before his scientific career, Wilson developed a fascination with insects and the natural world. He always had high expectations of himself but made the best of circumstances. Although his parents were divorced and his father's government career required frequent moves, Wilson found companionship in the woods of the southern United States or the museums of Washington, D.C. After injuries damaged his vision and hearing, Wilson focused his scientific skills on the smaller forms of life.

By the time he earned his master's degree at the University of

> Dr. Wilson with one of his favorite subjects—ants.



Alabama at the age of 20, Wilson was well known as a promising entomologist-an expert on the insect world. His specialty is the study of ants and their complex social behaviors. So it makes sense that Wilson next went to study at Harvard University, home to the world's largest ant collection. While at Harvard, he earned his Ph.D., conducted field research around the world, collected more than 100 previously undescribed species, and wrote several books on insect physiology and social organization. He eventually became curator of the Museum of Entomology at Harvard.

Clearly, Wilson has a passion for insects. "There is a very special pleasure in looking in a microscope and saying I am the first person to see a species that may be millions of years old," he says. Some of Wilson's research has focused on the social behavior of ants. Among other important scientific findings, Wilson was the first to demonstrate that ant behavior and communication is based mostly on chemical signals.

#### From Insects to Humans

In 1971, Wilson published *The Insect Societies*, which surveyed the evolution of social organization among wasps, ants, bees, and termites. Wilson began to extend his attempts to understand the relationship of biology and social behavior to other animals, including humans. In 1975, Wilson published a controversial book exploring these new ideas, called *Sociobiology*. Now an accepted branch of science, sociobiology is the study of the biological basis of social behavior in animals, including humans.

During Wilson's studies of the behavior of ants and other social insects, he became interested in the insects' role in the ecosystems where he studied them. Some of his research involved camping for months at a time in a remote wilderness such as the Amazon basin, carefully studying the activities of certain species. His writings include amazing tales of watching huge colonies of "driver" ants swarm out over an area, capturing and killing a great many other species in their path.

If you have ever played the popular computer game SimAnt<sup>TM</sup>, Dr. Wilson again deserves credit for providing the inspiration. In 1990, Wilson received his second Pulitzer Prize for co-authoring The Ants, an enormous encyclopedia of the ant world. In addition to describing 8,800 known species of ants, the book details the great variations among ant species in terms of anatomy, biochemistry, complex social behaviors, and especially their critical role in many ecosystems. Wilson reminds us that ants "are some of the most abundant and diverse of the Earth's 1.4 million species. They're among the little creatures that run the earth. If ants and other small animals were to disappear, the Earth would rot. Fish, reptiles, birds-and humanswould crash to extinction."

#### **Onward to Biodiversity**

As with many great scientists, each thing Dr. Wilson studies leads him to new questions and new ideas. During his research in remote lands, Wilson spent time reflecting and writing on the nature of ecosystems, the importance of biodiversity, and the role of humans in relation to these. In 1992, he put many of these ideas into another popular book called *The Diversity of Life*. This book combined Wilson's engaging writing style and personal expertise with the latest ecological research.



▶ Dr. Wilson (center) speaks to politicians and the public about the need to conserve our planet's biodiversity.

The book showed both how such incredible biodiversity has evolved on the Earth and how this asset is being lost because of current human activities. The book clearly explained for the general public many of the problems and potential solutions regarding biodiversity that we have studied in this chapter.

#### **Urgent Work**

Despite his fame, Wilson is a softspoken fellow who would prefer to live a quiet life with his research and with his family in their home in the woods of Massachusetts. But the urgent problem of species loss makes Wilson willing to face the public. "Humanity is entering a bottleneck of overpopulation and environmental degradation unique in history. We need to carry every species through the bottleneck ... Along with culture itself, they will be the most precious gift we can give future generations."

In 1986, Wilson served as one of the leaders of the first National Forum on Biodiversity, and then as editor of *Biodiversity*, the resulting collection of reports. Wilson continues to engage in public and private meetings with scientists and policy makers around the globe, urging them to support conservation efforts based on sound science.

Dr. Wilson recently began promoting the need for a global biodiversity survey. This project would involve an international scientific effort on par with the Human Genome Project. Wilson states that "to describe and classify all of the species of the world deserves to be one of the great scientific goals of the new century."

#### What Do You Think?

Do you find insects interesting? Could you imagine yourself as an entomologist? Do you think that Dr. Wilson made a goal early in his life to be an internationally famous conservationist? What has led him to take on this role?